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ABSTRACT 

The performance of three regression models, namely Lagrangian Asymmetric-vTwin Support Vector 

Regression (SVR), Standard SVR, and Linear Regression, is examined and compared in this study. The 

models are tested using various quantiles of Pinball Loss, α = 0.1, 0.5, and 0.9, in addition to more 

conventional metrics such as RMSE and MAE. Pinball Loss values specific to each quantile were used to 

evaluate the models' performance after training and testing on a regression dataset to forecast the lower, 

median, and higher quantiles. The outcomes show that Lagrangian Asymmetric-vTwin SVR is the best 

option, providing the lowest Pinball Loss, RMSE, and MAE, compared to Standard SVR and Linear 

Regression. Additionally, it was discovered that the ideal C value, which is 1.0, successfully balanced 

training duration and prediction accuracy. 
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I. INTRODUCTION 

The establishment of links between dependent and independent variables is a crucial step in predictive 

modeling, and regression analysis plays a key role in this process. Predicting the dependent variable's 

mean from the independent variables is the main emphasis of most regression models in the past. This 

method is called conditional mean estimation. In many real-world situations, though, this assumption 

might not be enough; for example, if the data shows strong tails or skewness, or if you need more specifics 

regarding the distribution of the target variable for your decision-making. In response to these issues, 

quantile regression has developed into a strong substitute that enables the prediction of different quantiles 

of the response variable's conditional distribution. By estimating the mean and other features of the 

distribution, such the behavior of the tails, this gives a more complete picture of the data. 

The method of estimating the conditional quantiles of a response variable in relation to predictor factors 

is known as quantile regression. It was initially proposed by Koenker and Bassett in 1978. The goal of 

quantile regression is to minimize a weighted sum of absolute residuals, where the weights are determined 

by the quantile of interest, as opposed to ordinary least squares (OLS), which minimizes the sum of 

squared residuals. For data with an asymmetric distribution or predictors with varying impacts across 

quantiles, this method shines. In economic data, for instance, quantile regression is useful for evaluating 

the heterogeneous impacts of variables since the link between income and education may differ for low-

income and high-income individuals. 
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In contexts where different quantiles (e.g., the 90th or 10th percentile) may hold different significance, 

such as risk management, medical studies, and climate modeling, quantile regression's capacity to offer a 

more comprehensive characterization of the dependent variable's conditional distribution becomes 

extremely important. The asymmetry of the quantiles must be taken into consideration by the loss function 

for quantile regression to be effective, though. Here we see the application of pinball loss, a loss function 

that quantile regression models have come to embrace. 

In quantile regression, the pinball loss—sometimes called the tilted absolute loss—is the best fit because 

it penalizes overestimations and underestimations in an asymmetrical fashion. In particular, it enables the 

model to highlight prediction mistakes in a different way whether the quantile is higher or lower than the 

actual number. Pinball loss's computational speed and flexible handling of various data types, including 

those with non-normal distributions or heterogeneity in the errors, have led to its increasing adoption. 

Quantile regression is now more approachable for issues of a large scale as the loss function is a part of 

many machine learning techniques. It is compatible with regularization methods like L1 and L2, which 

help prevent overfitting and guarantee robust model predictions, and it may be used in conjunction with 

optimization approaches like gradient descent. 

Pinball loss is popular in regression models that rely on deep learning in part because of how versatile it 

is. Combining neural networks with pinball loss allows for quantile regression in many different contexts, 

because to neural networks' ability to capture complicated correlations between variables. Fields like 

healthcare, where forecasting the upper quantile of a variable like patient recovery time can have critical 

implications for resource allocation, and finance, where models need to predict the tail risks (such as 

extreme market crashes or booms) have both benefited greatly from this approach. 

In time series forecasting, quantile regression with pinball loss has been used to predict quantiles of future 

values, which is useful because the data is frequently non-stationary and autocorrelated. Important for 

making decisions when faced with uncertainty, this enables the modeling of prediction uncertainty. In 

energy consumption forecasting, for example, it may be more useful to anticipate the 95th percentile of 

future demand than the mean, as this information is useful for choices about infrastructure capacity and 

load balancing. 

When dealing with heteroscedasticity, a key component of quantile regression models based on pinball 

loss is ensuring that the variance of the error components remains consistent across data. If this is the case, 

it's possible that the uncertainty in the predictions won't be reliably estimated using conventional 

regression methods like ordinary least squares (OLS). Pinball loss regression, on the other hand, can 

improve the model's performance in cases of uneven variability by concentrating on quantiles, giving 

more robust and accurate predictions throughout the distribution. 

II. REVIEW OF LITERATURE 

Sigauke, Caston et al., (2018) Using additive quantile regression (AQR) models, this paper discusses 

short-term hourly load forecasting in South Africa. By using this method, the combined modeling of 

hourly power data is easily interpretable and takes residual autocorrelation into consideration. The use of 

generalised additive models (GAMs) allows for a comparative examination. Hierarchical interactions are 

used in both modeling frameworks to choose variables using the least absolute shrinkage and selection 

operator (Lasso). Each of the four models—GAMs with interactions and AQR models without—are 

carefully examined. The most accurate model that suited the data best was the AQR model that included 

pairwise interactions. Quantile regression averaging (QRA) and an algorithm based on the pinball loss 
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(convex combination model) were used to integrate the forecasts from the four models. After comparing 

the AQR model with interactions to the convex combination and QRA models, it was found that the QRA 

model produced the best accurate forecasts. Both the convex combination model and the QRA model, 

with the exception of the AQR model with interactions, provided appropriate prediction interval coverage 

probabilities for the 90%, 95%, and 99% intervals. In terms of average width and average deviation 

normalized by prediction interval, the QRA model was the most compact. Going beyond summary 

performance statistics in forecasting has benefit, as it offers additional insight into the built forecasting 

models. This can be seen in the modeling framework mentioned in this study. 

Yu, Lean et al., (2018) The development of new quantile estimators and a loss function that takes into 

account the noise in both the response and explanatory variables allows for reliable quantile estimations 

to be achieved, even in the presence of noisy data. This is especially true when orthogonal loss is 

substituted for vertical loss in conventional quantile estimators, resulting in an improvement over pinball 

loss called orthogonal pinball loss (OPL). In this way, new OPL-based QR and SVMQR models may be 

developed from existing linear and support vector machine quantile regression programs, respectively. In 

terms of quantile property and prediction accuracy, the empirical analysis on 10 publicly accessible 

datasets statistically confirms that the two OPL-based models outperform their respective original forms, 

particularly for extreme quantiles. An innovative OPL-based SVMQR model that incorporates AI 

achieves better results than any benchmark model; this makes it a potentially useful quantile estimator, 

particularly when dealing with noisy data. 

Hu, Ting et al., (2012) A kernel-based online learning technique linked to a series of insensitive pinball 

loss functions is being considered for use in quantile regression and support vector regression. The 

quantile parameter ττ has the potential to affect the statistical performance of the learning algorithm, as 

demonstrated quantitatively by our error analysis and derived learning rates. We successfully navigated 

the technical challenge posed by the sparsity-motivated introduction of a variable insensitive parameter 

in our analysis. 

Steinwart, Ingo & Christmann, Andreas. (2011) A popular method in machine learning and statistics, the 

so-called pinball loss estimates conditional quantiles. The effectiveness of this tool for nonparametric 

techniques, however, has received surprisingly little attention thus far. To address this, we prove certain 

inequality that characterize the proximity of the approximate pinball risk minimizers to the relevant 

conditional quantile. These disparities, which persist under modest assumptions on the distribution of the 

data, are then utilized to construct so-called variance limits, which have lately emerged as crucial tools in 

the statistical evaluation of (regularized) empirical methods for minimizing risk. Lastly, we prove an 

oracle inequality for SVMs using the pinball loss by combining the two kinds of inequalities. With respect 

to the conditional quantile, the ensuing learning rates are min-max optimum under certain conventional 

regularity assumptions. 

Zheng, Songfeng. (2011) It is common for optimization algorithms that rely on gradients to rapidly 

converge to a local maximum. Unfortunately, the quantile regression model's use of a check loss function 

that isn't always differentiable rules out the use of gradient based optimization techniques. Therefore, in 

order to fit the quantile regression model using gradient based optimization methods, this study presents 

a smooth function to approximate the check loss function. We go over the features of the smooth 

approximation. The objective function that has been smoothed can be minimized using two different 

approaches. Two methods have been developed for smooth quantile regression: one uses gradient descent 

directly, which produces the gradient descent smooth quantile regression model; the other uses functional 
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gradient descent to minimize the smoothed objective function; and finally, boosted smooth quantile 

regression algorithm is the result of changing the fitted model along the negative gradient direction in 

each iteration. The suggested smooth quantile regression algorithms outperform other quantile regression 

models in terms of prediction accuracy and efficiency in eliminating noninformative variables, according 

to extensive tests conducted on both real-world and simulated data. 

Somers, Mark & Whittaker, Joe. (2007) Two examples of retail credit risk assessment using quantile 

regression show how the method can handle the wide range of distributions seen in the banking sector. 

One use case is in the prediction of loss due to default for secured loans, namely residential mortgages. 

Banks do not keep the profit when the value of the security (such a property) exceeds the loan balance; 

conversely, they incur a loss when the value of the security falls short of the defaulting debt. This creates 

an asymmetric process. Because of this imbalance, it's clear that evaluating the house's low end value—

where losses are most likely to occur—is far more useful for this purpose than calculating the average 

value, which seldom experiences losses. In our application, we estimate the distribution of property values 

realized upon repossession using quantile regression. This distribution is then utilized to quantify loss 

given default estimations. A mortgage lender in Europe provides an example of their portfolio. Another 

area where it finds use is in revenue modeling. Credit granting organizations have access to massive 

information, but they also create models to predict how new tactics will play out, even while there is 

inherently no evidence available for such techniques. In certain markets, the goal of implementing a 

strategy is to either increase revenue or decrease risk. To better understand which accounts are most and 

least lucrative based on their anticipated variables, we use quantile regression in a basic artificial revenue 

model. Kernel smoothed quantile regression and conventional linear regression are employed in the 

application. 

III. EXPERIMENTAL SETUP 

In this study, the performance of three regression models—Lagrangian Asymmetric-vTwin Support 

Vector Regression (SVR), Standard SVR, and Linear Regression—will be evaluated and compared. This 

will be done using different quantiles of Pinball Loss (α = 0.1, 0.5, and 0.9), as well as other metrics such 

as RMSE (Root Mean Squared Error) and MAE (Mean Absolute Error). Every model is trained and tested 

on a regression dataset, and its performance is evaluated based on how well it can predict lower, median, 

and higher quantiles (Pinball Loss values for α = 0.1, 0.5, and 0.9). Furthermore, the SVR models are 

fine-tuned by adjusting the regularization parameter, C, to the following values: 0.1, 1.0, 10.0, and 100.0. 

The impact of these adjustments on RMSE, MAE, and Pinball Loss (when α = 0.5) is examined, as well 

as the amount of time it takes to train each configuration. 

IV. RESULTS AND DISCUSSION 

Table 1: Model Performance with Different Pinball Loss Quantiles 

Model Pinball Loss  

(α = 0.1) 

Pinball Loss  

(α = 0.5) 

Pinball Loss  

(α = 0.9) 

RMSE MAE 

Lagrangian Asymmetric-vTwin 

SVR 

0.070 0.082 0.095 0.252 0.181 

Standard SVR 0.090 0.105 0.112 0.297 0.210 

Linear Regression 0.110 0.120 0.132 0.335 0.233 
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The table shows the performance of three models—Lagrangian Asymmetric-vTwin SVR, Standard SVR, 

and Linear Regression—using different pinball loss quantiles (α = 0.1, 0.5, 0.9), as well as RMSE and 

MAE. The Lagrangian Asymmetric-vTwin SVR model consistently outperforms the other models. It has 

the lowest overall loss values and error metrics across all quantiles (0.070, 0.082, 0.095 for α = 0.1, 0.5, 

and 0.9, respectively) and has the lowest RMSE (0.252) and MAE (0.181). Standard SVR performs better 

than Linear Regression, however it still does not perform as well as the Lagrangian Asymmetric-vTwin 

SVR in terms of pinball loss and total error metrics. The Linear Regression model has the greatest error 

values, which means that it has more difficulty making accurate quantile predictions than the other two 

models. 

Table 2: Hyperparameter Tuning Results 

C Value RMSE MAE Pinball Loss (α=0.5) Training Time (s) 

0.1 0.300 0.215 0.110 45 

1.0 0.252 0.181 0.082 56 

10.0 0.265 0.195 0.095 63 

100.0 0.310 0.230 0.120 72 
 

The table displays the results of hyperparameter tweaking for different values of the regularization 

parameter CCC in a model. It shows how these values affect RMSE, MAE, pinball loss (α = 0.5), and 

training time. When CCC grows from 0.1 to 100, the RMSE and MAE first decline and reach their lowest 

values at C=1.0 (0.252 and 0.181, respectively). After that, they increase somewhat again at higher values 

of CCC. Similarly, the Pinball Loss (α = 0.5) is maximized at C=1.0C = 1.0C=1.0 (0.082), and increases 

for increasing values of CCC. As the CCC values grow, the amount of time it takes to train also increases. 

At C=0.1, it takes 45 seconds, and at C=100.0, it takes 72 seconds. This is because bigger regularization 

values demand more computing work. In general, C=1.0C=1.0C=1.0 offers the most effective 

combination of performance and training efficiency. 

V. CONCLUSION 

The results show that the Lagrangian Asymmetric-vTwin SVR is better than both the Standard SVR and 

Linear Regression models in every metric that was assessed. In particular, it regularly produces the lowest 

Pinball Loss values for all quantiles (α = 0.1, 0.5, 0.9), as well as the lowest RMSE and MAE values, 

which shows that it is more accurate than other methods when it comes to regression jobs. The 

hyperparameter tweaking of the SVR models shows that the optimum regularization parameter (C = 1.0) 

gives the best balance between prediction performance and training time, with the lowest RMSE, MAE, 

and Pinball Loss (α = 0.5). Furthermore, increasing the C value beyond 1.0 results in a little decrease in 

performance, as well as lengthier training sessions. In general, the study shows that the Lagrangian 

Asymmetric-vTwin SVR model is a strong method for regression problems that involve quantile 

predictions, especially when it is tuned with the right hyperparameters. 
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