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ABSTRACT 

In order to improve the evaluation of natural hazards in tectonically active zones, this research offers an 

integrated strategy that combines data mining approaches with seismic modeling. Conventional seismic 

models don't always do a good job of representing nonlinear connections and dynamic tectonic activity, 

especially with the growing amount and complexity of complex geographic data. To improve forecast 

accuracy and early warning capabilities, data mining may be used as a nonparametric analytical strategy 

to uncover hidden patterns and correlations within vast, diverse datasets. Data mining helps find seismic 

precursors, estimate event magnitudes, and identify high-risk zones by using machine learning methods 

including clustering, regression, and classification. This hybrid approach provides a more thorough 

comprehension of possible hazards when combined with probabilistic and deterministic seismic models. 

Dynamic risk mapping, multi-hazard interaction modeling, and real-time hazard monitoring are the main 

points of the research. It further shows how these methods, when combined, can build stronger 

infrastructure and make better policy choices. The integrated model has great promise for enhancing 

disaster preparation and risk mitigation measures in earthquake-prone locations, despite obstacles such as 

data quality, computing needs, and multidisciplinary collaboration. Findings from this study point to data-

driven, adaptable approaches as the way forward for seismic risk assessment. 

Keywords: Data Mining, Seismic Modeling, Natural Hazard Assessment, Tectonic Zones, Earthquake 

Prediction. 

I. INTRODUCTION 

In tectonically active zones, natural disasters, especially earthquakes, continue to be a major concern for 

people, buildings, and ecosystems. For successful risk assessment and mitigation, rigorous, predictive, and 

multi-disciplinary techniques are required for earthquakes and its related hazards, which are complex and 

nonlinear processes. When it comes to understanding tectonic activity and hazard predictions, traditional 

seismic modeling techniques—which are mostly based on geophysics, geology, and seismology—have been 

invaluable. Nevertheless, a chance to improve these traditional approaches by incorporating data mining 

techniques has arisen due to the growing availability of large-scale environmental, geographical, and seismic 

data. Data mining is a branch of AI and computer science concerned with discovering useful correlations and 

patterns in massive databases. Information collected from satellite imagery, sensor networks, historical seismic 

recordings, GPS data, and remote sensing technologies is particularly significant for natural hazard assessment 

in tectonic zones due to its capacity to manage large amounts of diverse data.  

Data mining helps forecast seismic event magnitudes and frequencies by identifying antecedents to 

seismic events, delineating high-risk zones, and employing methods including clustering, regression 

analysis, classification, and machine learning algorithms. Because of their potential inability to represent 

the multi-scalar, dynamic character of tectonic processes, conventional seismic models may have their 

inadequacies addressed by this integration. A new way of looking at natural disaster risk has emerged 

with the combination of data mining and seismic modeling.  
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Both probabilistic and deterministic methods of seismic modeling are based on mathematical and physical 

models of fault mechanics, ground motion propagation, and the interaction of tectonic plates. Although 

these models play an essential role in comprehending seismicity's physics, their precision is often limited 

by inputs that are either missing data or out of date. When used in conjunction with seismic models, data 

mining may improve their prediction capacity and flexibility by adding real-time and historical statistics. 

In order to create dynamic seismic models, machine learning algorithms may sift through mountains of 

seismic data in search of irregularities and subtle patterns that might indicate an impending big earthquake. 

The ability for early warning systems and real-time danger monitoring is one of the main benefits of this 

integration.  

Algorithms for data mining may continually examine data coming in from seismic stations, satellite feeds, 

and ground sensors; this allows for speedier community and government reactions by alerting on abnormal 

behavior. This fast analysis and forecast system might greatly reduce the effects of disasters in tectonic 

zones, especially those located in developing or heavily inhabited areas.  

Urban planners and legislators may build resilient infrastructure and communities with the use of dynamic 

hazard maps that represent real-time tectonic pressures and historical event patterns, made possible by 

data mining. In tectonic zones, where risks are frequent and amplified by other environmental weaknesses, 

this multidisciplinary strategy is of the utmost importance. Seismicity, floods, landslides, and other 

climate-related hazards are all too common in areas located within the Himalayan Belt or the Pacific Ring 

of Fire. To get a more complete picture, showing how several dangers are dependent on one another, it is 

best to combine seismic models with multi-hazard data mining techniques.  

The development of integrated disaster risk reduction (DRR) plans is facilitated by this comprehensive 

view. Data mining and seismic modeling integration has great promise, but it is not without its share of 

obstacles. Important obstacles to successful implementation include inadequate data or lack of 

availability, computational constraints, uninterpretable models, and the need for multidisciplinary 

knowledge. Additionally, there is an urgent need for global partnerships to develop open-access platforms 

that support this kind of integrative research, standardize procedures, and exchange data.  

It is important to consider the ethical implications of data privacy, particularly when working with data 

collected from crowds or from mobile devices. One exciting new area for natural hazard assessment is the 

combination of data mining with seismic modeling. To lessen the impact of seismic hazards, it provides 

real-time monitoring, improved prediction capabilities, and dynamic risk mapping. Innovative and 

integrative techniques like these are crucial for protecting populations and fostering sustainable 

development in areas prone to hazards, since tectonic activity is a constant and unpredictable natural force. 

Data Mining 

Data mining is a powerful analytical process designed to explore large amounts of data in search of 

consistent patterns, trends, anomalies, and relationships that can be used to make valid predictions or 

informed decisions. As the volume of digital data grows exponentially across industries and domains, data 

mining has become an essential tool for extracting valuable insights from raw data. The term "data 

mining" is somewhat misleading, as it suggests the extraction of data, whereas the process actually 

involves analyzing data to discover patterns and knowledge. Data mining is one of the steps in the broader 

process of Knowledge Discovery in Databases (KDD), which includes data selection, preprocessing, 

transformation, data mining itself, and interpretation or evaluation of the discovered patterns. Data mining 

integrates principles from multiple fields including statistics, machine learning, artificial intelligence, and 
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database systems to uncover useful information from vast datasets. Its goal is not only to find patterns in 

data but to ensure these patterns are useful and can support decision-making in real-world contexts. 

Various techniques are employed in data mining such as classification, clustering, regression, association 

rule learning, anomaly detection, and sequential pattern mining. Classification involves predicting a 

categorical label, such as whether an email is spam or not. Clustering, on the other hand, groups data 

points that are similar to each other without prior labels, useful in market segmentation and customer 

profiling. Regression is used to predict continuous values like house prices or stock prices. Association 

rule mining identifies relationships between variables in large databases, commonly used in market basket 

analysis to find products frequently bought together. Anomaly detection identifies unusual data records, 

often used in fraud detection and network security. These techniques help organizations to make proactive, 

knowledge-driven decisions and improve operational efficiency. 

In the business world, data mining is widely used for customer relationship management, risk assessment, 

fraud detection, and targeted marketing. For instance, by analyzing customer purchase patterns, 

companies can tailor their advertising strategies, improve customer service, and increase sales. Banks and 

financial institutions use data mining to evaluate credit risks, detect suspicious transactions, and improve 

investment strategies. In the healthcare sector, data mining is used for diagnosing diseases, identifying 

treatment effectiveness, and managing hospital resources more effectively. Medical data mining helps in 

identifying risk factors for diseases and predicting outcomes based on patient history. Educational 

institutions use data mining to analyze student performance, identify at-risk students, and personalize 

learning experiences. Government agencies utilize data mining for crime detection, tax fraud detection, 

and public health monitoring. In e-commerce, data mining powers recommendation systems by analyzing 

customer behavior and preferences, thus enhancing user experience and sales. Social media platforms use 

data mining to understand user interests, detect fake accounts, and deliver personalized content and 

advertisements. In the field of scientific research, data mining helps in analyzing large datasets generated 

from experiments and simulations, aiding in discovery and innovation. Despite its many advantages, data 

mining is not without challenges. One of the primary challenges is data quality. The results of data mining 

are only as good as the data fed into the system. Incomplete, noisy, or inconsistent data can lead to 

inaccurate conclusions. Data privacy and security is another major concern, especially when dealing with 

sensitive information such as personal, financial, or medical records. The misuse of data mining 

techniques can lead to ethical issues, such as profiling or discrimination.  

II. LITERATURE REVIEW 

Priyanto, Dadang et al., (2022) so yet, scientists have been unable to pin down earthquakes' exact causes 

or predict when they will occur. A number of approaches have been devised, one of which pertains to data 

mining. These include clustering, fuzzy modeling, support vector regression, hybrid neural networks, and 

a host of others. A suitable strategy is required to produce best findings in earthquake research, which 

contains unclear parameters. Typically, parametric and non-parametric approaches are used to classify 

various predictive data mining techniques. The non-parametric approach used in this work is based on the 

MARS algorithm's backward step, which is conic multivariate adaptive regression spline (CMARS). 

Parameter testing and analysis yielded a mathematical model with 16 basis functions (BF) in this work; 

12 of these basis functions were considered important in building the model, while 4 were deemed 

unimportant. The magnitude is 31.1%, the site temperature is 5.5%, the depth is 3.5%, and the epicenter 

distance is 100% according to the degree of variable contribution. Prediction analyses have shown that 

Malaka, Genggelang, Pemenang, Tanjung, Tegal Maja, Senggigi, and Mangsit are the places of Lombok 

most at risk from earthquakes. 
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Priyanto, Dadang et al., (2020) Data mining is the practice of discovering insights and patterns in large 

datasets. There are two main schools of thought when it comes to data mining: descriptive and predictive. 

The Classification and Regression function is one of several Math functions that may be used in data 

mining. An often-used statistical tool for studying and modeling correlations between variables, 

Regression Analysis (also termed Prediction Analysis) is ubiquitous in the field. The estimation of the 

regression curve may be accomplished by the study of Nonparametric Regression in regression. Among 

the many popular non-parametric regression methods, MARS stands out. When the Linear Regression 

approach has flaws, the MARS technique may fix them. A novel approach named CMARS (Conic 

Multivariate Adaptive Regression Splines) was developed by combining the CQP quadratic programming 

framework (CQP) from MARS with a stepwise backward algorithm. Modeling high-dimensional data 

with nonlinear structures is within the scope of the CMARS approach. Analyzing earthquake forecasts, 

particularly in Lombok, West Nusa Tenggara, might benefit from the CMARS model's adaptability. The 

dependent variable, Peak Ground Acceleration (PGA), yields statistically significant findings when a 

mathematical model including four independent factors is established. A total of 100%, 31.1% by 

magnitude, 5.5% by incident site temperature, and 3.5% by depth make up the independent variables. 

Zhang, Wengang et al., (2015) it is not feasible to depend solely on simulation for the goal of design 

optimization due to the enormous computational costs of running complex numerical analyses like finite 

element simulations. This is because many geotechnical problems are extremely nonlinear and 

multivariate, even though the processing speed and memory of affordable computers are increasing 

rapidly. In order to keep costs down, surrogate models, which are also called meta-models, are built and 

used instead of the real numerical simulation models. For a more trustworthy surrogate model, it's best to 

use design variables with large ranges. For this reason, it is preferable to use meta-modeling approaches 

that can handle multivariate issues. In order to approximate the connection between inputs and outputs 

with huge data, this work investigates the usage of multivariate adaptive regression splines (MARS), a 

very straightforward nonparametric regression approach. An extensive explanation of the MARS 

approach and its related operations is provided first. To showcase MARS's function approximation skills 

and its effectiveness in handling multivariate issues with enormous data sets, two complex geotechnical 

problems are next given. The MARS method can estimate the contributions of input variables and provide 

simple, accurate, and easily interpretable models, as shown in this study. 

Zhang, Wengang & Goh, Anthony. (2014). The loads from the superstructure are transferred onto the 

more rigid soils or rocks by means of piles, which are long and thin structural components. The piling 

hammer's impact causes compression and tension strains in driven piles. Therefore, it is crucial to ensure 

that the pile's strength is enough to withstand the pressures generated by the pile hammer's impact as a 

design factor. There is no exact analytical answer to pile drivability with respect to the phenomena 

involved because of its complexity. The nonlinear interactions and linkages between the system's 

predictors and dependent responses may be best mapped by neural networks when numerical hypothetical 

outcomes or measurable data are available. A further advantage over other computational tools is that it 

is not necessary to assume any mathematical link between the independent and dependent variables. 

However, others have pointed out that neural networks take a long time to train due to the fact that the 

best configuration isn't known in advance. Rather than using neural networks, this study looks at using 

multivariate adaptive regression splines (MARS), a relatively simple nonparametric regression algorithm, 

to approximatively estimate the input-dependent response relationship and to mathematically interpret the 

relationship between the different parameters. The drivability of piles is evaluated in this study using the 

MARS and Back propagation neural network (BPNN) models for predicting MTS, BPF, and Maximum 
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compressive stresses (MCS). The model construction and comparison of BPNN and MARS predictions 

are conducted using a database including over 4,000 piles. 

Yerlikaya-Özkurt, Fatma et al., (2014) For a given distance from the epicenter of an earthquake, the peak 

ground reaction may be estimated using empirical connections known as Ground Motion Prediction 

Equations (GMPEs). They establish a relationship between the amplitude and depth of an earthquake, the 

circumstances at the recording location, the kind of earthquake's source, and the ground's peak reactions. 

This paper presents a novel GMPE that is derived from an existing dataset using a prediction technique 

called Conic Multivariate Adaptive Regression Splines (CMARS). Conic quadratic programming is the 

unique continuous optimization method upon which CMARS is built. The employment of interior point 

techniques is made possible by the fact that these convex optimization problems are highly organized, 

looking like linear algorithms. We run the CMARS algorithm using Turkey's robust ground motion 

datasets. Three different GMPEs are used to compare the results. When it comes to predicting ground 

motion, CMARS works well. 

Güllü, Hamza. (2012). One of the main aspects that significantly impacts earthquake-induced structural 

damage is peak ground acceleration (PGA). Seismic hazard evaluations now often include PGA prediction 

and suitable ground motion model selection as key topics. In this research, we provide an application that 

uses genetic expression programming (GEP), a novel prediction tool, and the traditional regression 

approach to forecast the PGA. Then, we try to figure out which ground motion models based on GEP and 

regression are the best. In order to rank the ground-motion models for seismic hazard analysis in regions 

of moderate seismicity, specifically in the case of rock motion, the prediction performances were 

compared. In order to derive the candidate ground motion models of PGA attenuation equations, the 

appropriately structured data from the Turkish earthquake was used. Key attenuation properties, Turkish 

attenuation equations, and case records of strong ground motion data in Turkey were used to validate the 

LH technique, GEP, and regression models. Model validations are often successful for most PGA 

candidate models (GEP and regressions) listed as strong qualifiers (class A and B) according to the LH 

approach, while models ranked lower (class C) typically fail. 

Samui, Pijush & Kurup, Pradeep. (2012). In this paper, we look at the possibility of using MARS and LSSVM, 

which stand for multivariate adaptive regression spline, to forecast the OCR of clay deposits using data from 

Piezocone Penetration Tests (PCPT). The non-linear connections between the input and output variables are 

described by MARS using piece-wise linear segments. Using the regression approach, LSSVM is grounded 

on the idea of statistical learning. Modified cone resistance (q t), total stress vertical (σv), hydrostatic pore 

pressure (u 0), pore pressure at the cone tip (u 1), and the pore pressure immediately above the cone base (u 

2) are the parameters that the models use as input. An error bar for the expected OCR is provided by the 

constructed LSSVM model. Predictions of OCR have also been made using equations. Traditional OCR 

prediction techniques have been compared to the performance of MARS and LSSVM models. The findings 

show that the MARS and LSSVM models that were suggested are good ones for determining OCR. 
 

III. RESEARCH METHOD  

Multivariate Adaptive Regression Spline (MARS) 

To find the pattern of the association between the response variable and the predictor variable whose 

regression curve is unknown, the MARS technique is used. This nonparametric regression approach helps 

to address the difficulty of high-dimensional data. Parametric regression and nonparametric regression 

are the two main methods for completing predictions in data mining management.  
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As statistical tools, these two tacks see heavy application in studying and modeling inter-variable 

correlations. In order to address the problems with Recursive Partitioning Regression (RPR), the MARS 

approach can detect additive linear functions and generate continuous models at knots. In order to solve 

the MARS technique, the algorithm consists of two stages: the Forward Stepwise model and the Backward 

Stepwise model. Combining fundamental functions (BF), maximum interaction (MI), and minimal 

observation (MO) in the first stage means using the Forward Stepwise Algorithm. The study's predictor 

variables are depth, magnitude (Mw), and epicenter distance (Repi), whereas the response variable is Peak 

Ground Acceleration (PGA).  

The second stage of the Backward Stepwise model is used for the purpose of simplifying the basis function 

(BF) that was produced from the Forward Stepwise stage. In the backward stepwise model stage, the basis 

function (BF) that contributes little or nothing to the response variable will be removed. The number of 

least squares of the remaining value will decrease as a result of this elimination operation. 

Peak Ground Acceleration (PGA) 

The highest acceleration of ground vibrations in a region induced by an earthquake is known as Peak 

Ground Acceleration (PGA). If the PGA value is high in one location, the earthquake's epicenter will 

likely take a major beating. Gravitational acceleration, abbreviated "gal," is the standard unit of 

measurement for PGAs.  

Using the empirical computation of the Attenuation function is one technique to determine the PGA value. 

An area's susceptibility to ground vibrations, their amplitude, and the distance from the earthquake's 

epicenter are all determined by the attenuation function. The attenuation function is impacted by a number 

of variables, including the earthquake mechanism, the distance to the epicenter, and the state of the ground 

at the site.  

Also, the study used prediction analysis, which included selecting and separating relevant factors for the 

Responsive and Predictor variables in advance. Within this research, the response variable 'PGA' is used, 

with depth, magnitude (Mw), and epicenter distance (Repi) serving as the predictor factors. 

Data Collection  

Data collected from earthquake catalogs is used in this investigation. The data was filtered with a magnitude 

greater than 4 Mw and accessed in October 2024. The reason for this is because an earthquake with a 

magnitude below 4 Mw is unlikely to produce any noticeable damage or even be felt at all. Over the course of 

20 years, 105 recordings were compiled from earthquake catalogs, spanning from 4 to 5.5 Mw.  

A selection mechanism is used to process the data, which requires an earthquake magnitude more than 4 

Mw, a depth below 250 Km, and a center distance below 300 Km. Because it does not pose a threat, data 

that is not part of the provisions or ring will either be removed or not used. Predictive analysis makes use 

of the processed data. The magnitude, distance to the epicenter, and depth of the earthquake's core are the 

three factors that have been identified.  

Eq. 6 was used in the Multivariate Adaptive Regression Spline (MARS) approach for earthquake 

prediction analysis, while Eq. 7 was utilized to find the lowest value of Generalized Cross Validation 

(GCV). Earthquake prediction using SPM 8 software included examining the parameter factor of the 

predictor-response relationship. A pair of algorithms, known as Forward Stepwise and Backward 

Stepwise, is used by MARS. Combining the maximum basis function with the maximum interaction and 

minimal observation (MO) is what the Forward Stepwise method finds.  
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The greatest possible basis function for a cross-multiplication of two linked or correlated variables. The 

Maximum Interaction (MI) defines the longest possible path through the basis function (BF) that may 

pass through the knot site, while the Minimum Observation (MO) determines the smallest possible value 

for the smoothing parameter, or the smallest possible distance between knots. And to make the constructed 

mathematical model functions even simpler, the Backward Stepwise technique is used.  

The approach employs the Tikhonov Regularization technique, which imposes a penalty on mathematical 

models with too complicated functions, to reduce generalization mistakes. One way to tell whether a place 

is vulnerable to earthquakes is to look at its Peak Ground Acceleration (PGA). When an earthquake strikes 

a region with a high PGA value, it will cause significant damage. This research employs empirical 

calculations using the Joyner and Boore Attenuation functions to get the PGA value, which may be 

acquired either via accelerograph recordings or from other sources. 

IV. RESULTS AND DISCUSSION  

Results  

Epicenter distance and Maximum Ground Acceleration (PGA) values were determined during data 

preprocessing, which formed the basis of the study's findings. The PGA value was determined using the 

Joyner and Boore attenuation functions. The MARS approach may be used to continue the computation 

and prediction analysis after the PGA value is known. Choosing the best model by testing the data and 

finding the least GCV value is the next step in getting the best MARS model.  

The highest acceleration of ground vibrations in a region induced by an earthquake is known as Peak 

Ground Acceleration (PGA). If the PGA value is high in one location, the earthquake's epicenter will 

likely take a major beating. Gravitational Acceleration joules (PGA) are the standard units of 

measurement. Using the empirical computation of the Attenuation function is one technique to determine 

the PGA value. An area's susceptibility to ground vibrations, their amplitude, and the distance from the 

earthquake's epicenter are all determined by the attenuation function.  

The attenuation function is impacted by a number of variables, including the earthquake mechanism, the 

distance to the epicenter, and the state of the ground at the site.  

Also, the study used prediction analysis, which included selecting and separating relevant factors for the 

Responsive and Predictor variables in advance. Within this research, the response variable 'PGA' is used, 

with depth, magnitude (Mw), and epicenter distance (Repi) serving as the predictor factors. Finding out 

what happens when you use the right variables in your prediction analysis is possible. The training data 

for the MARS method's prediction analysis is derived from the outcomes of the Forward Stepwise and 

Backward Stepwise algorithms, which are based on a mix of BF, MI, and MO. Table following displays 

the results of the MARS regression using the training data. 

Table 1: Results of Training Data 

Parameter Estimate SE. T-Value P-Value 

Constant 0.04286 0.00029 148.3594 0 

Basis Function 1 -0.00131 0.00007 -18.98361 0 

Basis Function 2 0.00151 0.00003 58.67444 0 

Basis Function 3 0.02211 0.0011 20.06196 0 

Basis Function 4 -0.02334 0.00054 -43.43563 0 

Basis Function 5 0.00107 0.00008 13.60181 0 
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Basis Function 7 0.00038 0.00003 10.96367 0 

Basis Function 9 0.00031 0.00004 6.99231 0 

Basis Function 11 0.00039 0.00006 6.58793 0 

F-STATISTIC = 5977.78679 S.E. OF REGRESSION = 0.00035 

P-VALUE = 0.00000 RESIDUAL SUM OF SQUARES = 

0.00000 

[MDF, NDF] = [ 8, 23] REGRESSION SUM OF SQUARES = 

0.00577 
 

Testing and Analysis  

A statistical analysis test is essential in predictive analysis for obtaining the results of hypothesis testing 

and determining the degree of significance. One way to determine the importance of a parameter is to use 

the significance level. In order to apply statistical analysis to find out how important parameters are in 

relation to the mathematical model's applicability, hypothesis testing is necessary. This study employs a 

partial regression coefficient test to evaluate mathematical model analysis.  

Discussion  

Table 1 shows that the response variable is influenced by parameters created using 11 basis functions: 1, 

2, 3, 4, 5, 7, 9, and 11. Afterwards, the basic function is removed or omitted as it does not contribute to 

the answer variable. This includes basis functions 6, 8, and 10. A mathematical model, as shown in 

Formula below, may be used to determine the results of evaluating the data at the Backward Stepwise 

stage by simplifying the function. 

𝑌 =  0.042863 −  0.00130501 ∗  𝐵𝐹1 +  0.00151234 ∗  𝐵𝐹2 +  0.0221103 ∗  𝐵𝐹3 −

 0.0233377 ∗  𝐵𝐹4 + 0.00106639 ∗  𝐵𝐹5 +  0.000377886 ∗  𝐵𝐹7 +  0.000305277 ∗  𝐵𝐹9 +

 0.000391561 ∗  𝐵𝐹11;  

MODEL PGA = BF1 BF2 BF3 BF4 BF5 BF7 BF9 BF11;  

The following is the formula for Y (P GA), which is the outcome of PGA Prediction analysis using the 

MARS model, with the contribution of each basis function (BF): 

BF1 = max (0, REPI - 50.3651); 

BF2 = max (0, 50.3651 - REPI); 

BF3 = max (0, MW - 5.1); 

BF4 = max (0, 5.1 - MW); 

BF5 = max (0, MW - 4.8) * BF2; 

BF7 = max (0, REPI - 41.4528) * BF4; 

BF9 = max (0, REPI - 64.7445); 

BF11 = max (0, REPI - 44.9069); 

Table 2 shows the interplay of the predictor variable's contribution to the response variable, and it is based 

on the best MARS model. The predictor variables that impact PGA are determined by the MARS model 

in a sequential fashion according to the percentage of their contribution, which is determined by the 

smallest GCV value. These variables are the distance of the epicenter (Repi), the magnitude (Mw), and 

the depth (Depth). 
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Table 2: The Interactivity of Predictor Variable Contributions 

Variable  Importance  -gcv  

REPI 100.00000 0.00023 

MW 73.80473 0.00012 

DEPTH 0.00000 0.00000 
 

Table 2 shows that the two most important factors in the PGA value—the depth (Depth)—contribute zero 

percent, while the epicenter distance (Repi) and magnitude (Mw) account for seventy-three percent and 

seventy-two percent, respectively. Figure 1 displays the test results for the three-dimensional graphs of 

the predictor variable's contribution to the response variable, which help to explain the description of the 

variable contributions of each predictor. 

 
Figure 1: Graph of the Contribution of the Predictor Variable to the Response Variable 

Figure 1 is a three-dimensional graph showing that the contribution value to the Response variable increases 

as the value of the epicenter distance (Repi) decreases. This indicates that the effect of earthquake damage 

increases as the distance between the epicenter and the surrounding area becomes closer.  

It is also clear that the Response variable's contribution increases as the Magnitude (Mw) variable's value 

rises; hence, an earthquake's destructive power is directly proportional to its magnitude. Using the greatest 

PGA values, the regions of Andhra Pradesh with the highest potential for earthquake hazards may be 

determined once the Prediction Analysis findings have been tested and validated.  

The PGA value is determined by factors such as the earthquake's magnitude, depth, and distance from the 

epicenter. Although other variables, such as the state of the location's bedrock, influence earthquake 

damage, a high PGA value would, in principle, have a large effect. Policymakers may use the findings of 

the prediction research to establish criteria for infrastructure development in regions prone to earthquakes. 

This analysis groups the areas with the greatest earthquake susceptibility in Andhra Pradesh.  
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V. CONCLUSION 

Natural hazard assessment and mitigation in tectonic zones has taken a giant leap forward with the 

merging of data mining and seismic modeling. Despite their usefulness for understanding geophysical 

processes, classic seismic models aren't always up to snuff when it comes to managing catastrophe risk in 

real time. To supplement these models, data mining processes large and complicated information, finds 

trends, and enables predictive analytics—essential for making quick decisions. Together, these factors 

strengthen early warning systems, facilitate dynamic risk mapping, and guide the development of more 

robust infrastructure. To top it all off, this integration is multidisciplinary, which means that earth 

scientists, data analysts, engineers, and politicians can all work together to build a thorough framework 

for risk assessment. Problems like data heterogeneity, model validation, and ethical concerns, however, 

need strong frameworks and global collaboration to solve. To fully use this method in the future, it is 

crucial to invest in data infrastructure, encourage open data sharing, and create hybrid models. In tectonic 

hazard-prone locations, where climatic change and urbanization are increasing catastrophe risks, safer and 

more adaptable civilizations may be built by merging data mining with earthquake modeling. 
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