Recent Advancements and Emerging Trends in High-Performance Cooling Technologies for Power-Dense Electronic and Mechatronic Systems

Vishal

M.Tech in Manufacturing & Automation Engineering, Department of Mechanical Engineering, CBS Group of Institutions, Jhajjar.

Manoj

A.P in Mechanical Engineering, CBS Group of Institutions, Jhajjar.

ABSTRACT

The exponential growth in power density and miniaturization of modern electronic and mechatronic systems has intensified the need for efficient thermal management. Traditional cooling techniques, such as air-cooled heat sinks and single-phase liquid systems, are increasingly unable to manage the high heat fluxes and localized temperature gradients of high-power electronic components. This review critically examines recent advancements in cooling technologies—focusing on two-phase cooling, microchannel heat exchangers, vapor chambers, nanofluids, and phase-change materials—designed to enhance heat dissipation efficiency and system reliability. The study further explores the integration of advanced materials like graphene and diamond coatings, along with additive manufacturing and artificial intelligence for intelligent thermal regulation. Through a systematic analysis of literature published between 2017 and 2025, the paper identifies key research trends, challenges, and future directions in developing compact, lightweight, and energy-efficient cooling systems. The findings emphasize that next-generation cooling technologies will play a crucial role in improving the performance, durability, and sustainability of mechanical and electromechanical systems across automotive, aerospace, and industrial sectors.

Keywords: High-Power Electronics, Thermal Management, Microchannel Heat Sink, Two-Phase Cooling, Nanofluids, Graphene Composites, Vapor Chamber, Phase-Change Materials.

1. Introduction

The exponential growth in power density and miniaturization of modern electronic and mechatronic systems has intensified the challenge of effective thermal management. High-power electronic devices—such as converters, inverters, radar amplifiers, and aerospace control systems—generate significant heat during operation, often exceeding the dissipation capacity of conventional air or single-phase liquid cooling systems. Uncontrolled heat buildup can lead to thermal stress, reduced efficiency, reliability issues, and even catastrophic component failure. Therefore, developing compact, efficient, and sustainable cooling technologies is critical for maintaining the performance and longevity of next-generation mechanical systems.

Traditional cooling methods, while simple and cost-effective, suffer from inherent limitations in thermal conductivity, heat spreading, and energy efficiency. Air cooling provides low heat transfer capability, while conventional liquid systems demand substantial space, pumping power, and maintenance. As devices become increasingly compact, these systems fail to manage high localized heat fluxes and temperature non-uniformities, leading to performance degradation and shorter component lifespans.

To address these challenges, emerging research has focused on advanced thermal management solutions such as microchannel heat sinks, vapor chambers, and two-phase cooling systems, which enable efficient heat removal and uniform temperature distribution. The integration of novel materials—including graphene composites, diamond coatings, and aluminum alloys—has further enhanced heat spreading and thermal conductivity. Moreover, innovations in additive manufacturing and nanofluid-based cooling have opened new possibilities for designing lightweight, energy-efficient, and customizable cooling architectures.

This review paper explores the latest advancements in cooling technologies for high-power electronics integrated into mechanical systems. It examines the limitations of conventional methods, identifies critical thermal challenges, and discusses the potential of emerging materials and fabrication techniques. Through providing a comprehensive overview of novel thermal management strategies, the study aims to contribute to the development of compact, reliable, and sustainable cooling solutions for future automotive, aerospace, industrial, and defense applications.

2. Literature Review

Pramanik (2025) reviewed the rapid expansion of data centers and the consequent need for efficient cooling systems. The paper compared conventional air, liquid, and phase-change cooling, and highlighted advanced materials like graphene for enhanced heat transfer. It emphasized AI-driven monitoring and modular, rack-level approaches as key directions for scalable, energy-efficient data-center cooling.

Meier and Strangas (2025) examined cooling challenges in high-speed, compact machines where reduced surface area increases thermal losses. Their review covered air, indirect and direct liquid cooling, stressing method-specific tradeoffs for high-speed applications. They illustrated the necessity of codesigning electromagnetic and thermal systems to optimize machine performance and reliability.

Ahmad et al. (2025) surveyed thermal management in electric vehicles, focusing on motors, inverters, and reducers. They compared traditional and emerging cooling solutions, including nanofluids, PCMs, and hybrid liquid—air systems. The review highlighted AI-based dynamic optimization and advocated integrated cooling across the EV powertrain for efficiency and longevity.

Wang et al. (2025) investigated radiative cooling (RC) and hybrid RC systems for data-center energy savings. They designed and tested radiative cooler structures, simulated multi-level performance, and validated a cooling film experimentally. Results showed substantial PUE and EER improvements across Chinese climate zones, supporting hybrid RC as a viable green solution.

Ye et al. (2025) studied immersion liquid cooling (ILC) for EV thermal management and developed an AMESim® model. Their simulations optimized battery set-temperatures and quantified benefits on cold-start and cabin comfort. They reported improved heat exchange, faster temperature control, and an optimal battery setpoint that maximized driving range.

Peter et al. (2024) provided a systematic review of sustainable cooling technologies for electronics with an environmental focus. They synthesized advancements in phase-change materials, nanotech heat sinks, liquid and thermoelectric cooling. The authors recommended policy and lifecycle analyses to accelerate adoption of low-impact, high-performance cooling solutions.

You et al. (2024) reviewed mine cooling technologies addressing high-temperature hazards in deep mining environments. They compared mechanical and non-mechanical approaches and emergent insulation materials and clothing solutions. The study called for intelligent, energy-efficient system integration to improve safety and operational efficiency underground.

Qu et al. (2024) analyzed underground high-temperature damage mechanisms and heat dissipation in mines. They reviewed artificial and passive cooling techniques and proposed a model linking roadway geometry to inlet airflow temperature. Their work offered theoretical guidance for using ground temperature effects to optimize mine ventilation and worker safety.

Fu et al. (2023) examined thermal safety and heat-dissipation models for power batteries in new energy vehicles. They reviewed electrochemical—thermal modeling and compared air, liquid, and PCM-based cooling, noting hybrid approaches' advantages. The authors highlighted immersion phase-change cooling as promising for high energy-density batteries despite cost and weight tradeoffs.

Huang et al. (2023) surveyed cooling technologies for Chinese Internet data centers within the dual-carbon policy context. They compared air, free, liquid, TES cooling, and envelope strategies, assessing regional suitability and PUE impacts. The study recommended tailored technology mixes by climate and scale to maximize energy performance and policy compliance.

Qi et al. (2023) numerically studied single-phase immersion cooling for avionics server modules with flow distributors. Simulations showed flow distribution reduced hot-spot temperatures by 4–8°C and influenced Nusselt number behavior. They concluded flow management improves local cooling but must be balanced against overall module performance and PDN effects.

Konovalov et al. (2023) reviewed cooling trends for electric motors and surveyed TRL9 implementations from industry. They discussed air and liquid internal/external cooling, rotor/stator ducting, and refrigerant choices for high power-to-dimension ratios. The paper emphasized liquid cooling's potential for compact, high-power applications while noting complexity and maintenance concerns.

McNair et al. (2022) reviewed thin-walled, small-diameter pipe manufacture and joining for low-mass, high-pressure cooling systems. They assessed existing and novel fabrication/joining techniques relevant to detectors and lightweight engineering. The authors identified knowledge gaps and proposed research directions to expand industrial application of such piping.

Pezzutto et al. (2022) provided a taxonomy of alternative cooling technologies versus vapor-compression baselines in Europe. They evaluated membrane heat pumps, transcritical cycles, Reverse Brayton, and absorption systems for competitiveness by 2030. Their conclusion was that while promising options exist, none yet outperformed vapor-compression in cost-efficiency at scale.

Abedrabboh et al. (2022) reviewed active and emerging cooling cycles in response to rising ambient temperatures and sustainability goals. They compared vapor-compression, thermally driven, and novel cycles (electrocaloric, magnetocaloric, etc.) using a sustainability index. Results favored hybrid approaches combining proven VC systems with emerging tech to balance efficiency and environmental impact.

Kiliç (2022) assessed mechanical compressors integrated in thermal-mechanical combined cooling systems. The review covered absorption and adsorption thermal compressor types, configurations, and heat-source integration. The author argued such combined systems can broaden operational ranges and lower energy use with continued innovation.

Yang et al. (2021) reviewed direct cooling systems for lithium-ion batteries, proposing a "4C chain" framework for design and modeling. They covered construction, coolant selection, cooling-plate design, and component modeling, highlighting application cases. Future prospects included digital twins and cloud-based control for precise, model-based thermal management.

Aglawe et al. (2021) surveyed cooling technologies for laptops and PCs, noting a trend toward liquid cooling for high loads. They compared air, single- and two-phase liquid cooling, and heat pipes by heat flux, temperature response, and energy use. The review predicted broader liquid-cooling adoption in high-performance consumer and server electronics.

Sarbu (2021) presented a thorough review of solar-driven heating and cooling, emphasizing sorption and thermo-mechanical systems. The work summarized simulation tools (e.g., TRNSYS), solar-TE cooling, and applications in near-zero energy buildings. Recommendations focused on system optimization and integrating solar cooling in low-energy architectural designs.

Wong et al. (2021) explored copper—graphene foams as porous materials for advanced thermal management in power electronics. They characterized microstructure and graphene coatings, showing marked improvements in thermal performance. The study positioned copper—graphene foams as promising package-integrated materials for high-density electronic cooling.

Harun and Sidik (2020) reviewed liquid-cooling evolution for CPUs as electronic devices became more compact and heat-intensive. They examined coolant types, liquid block configurations, and nanofluid enhancements to improve heat transfer. Their review supported a shift from air to liquid cooling for high-performance processors due to rising thermal loads.

Kulkarni et al. (2020) evaluated radiant heating and cooling systems as energy-efficient alternatives for buildings. They discussed water-based radiant systems and chilled-ceiling panels, highlighting lower lifecycle costs and reduced duct losses. The authors advocated radiant systems for better indoor comfort with reduced overall energy consumption.

Suhendri et al. (2020) reviewed radiative cooling (RC) developments for building integration, focusing on materials and architectural fit. They noted technical and aesthetic challenges for passive RC deployment and stressed occupant comfort assessment. The paper called for multidisciplinary design strategies to enable reliable, building-integrated radiative cooling.

Groschup et al. (2019) investigated heat dissipation effects on electric motor power density and Esson's Number. They combined test-bench data with reduced-order thermal models to compare rotor/stator cooling strategies. Findings clarified dependencies between cooling choices and achievable power-to-size improvements in traction motors.

Lupu et al. (2018) reviewed thermal management approaches to improve photovoltaic performance and address the PV-temperature paradox. They cataloged cooling methods and highlighted PV-T-TE hybrid integration as a route to recover thermal losses. The study emphasized thermal solutions as key enablers for higher solar conversion efficiency.

Jafari et al. (2017) critically reviewed century-long evaporative cooling concepts for automotive engine thermal management. They classified designs, analyzed shortcomings, and identified barriers to commercial adoption. Their systematic appraisal clarified remaining research gaps needed to realize evaporative cooling in production vehicles.

Table 1: Summary of Major Studies on Advanced Cooling Systems

S.	Author(s)	Proposed Work	Methodology	Conclusion
No.	[Year]	Troposed Work	Wethodology	Conclusion
1	Pramanik (2025)	Discussed cooling challenges in data centers and reviewed modern thermal management systems.	Compared air, liquid, and phase-change cooling; analyzed AI integration and advanced materials.	Highlighted AI-driven, modular, and graphene-enhanced systems as the future of sustainable cooling.
2	Meier & Strangas (2025)	Examined cooling needs of high-speed compact machines.	Reviewed air, indirect, and direct liquid cooling; presented design interdependence.	Emphasized co- optimization of electromagnetic and thermal systems for efficient performance.
3	Ahmad et al. (2025)	Focused on advanced cooling for electric vehicle (EV) powertrains.	Reviewed hybrid cooling systems using nanofluids, PCM, and AI-based optimization.	Proposed integrated and intelligent thermal systems to enhance EV reliability and sustainability.
4	Wang et al. (2025)	Developed hybrid radiative cooling systems for energy-efficient data centers.	Designed and tested radiative cooler structures; simulated multi-level performance.	Demonstrated improved energy savings and PUE, suggesting RC's feasibility across climates.
5	Ye et al. (2025)	Investigated immersion liquid cooling (ILC) for EV thermal management.	Developed AMESim® model; simulated battery and cabin temperature control.	Reported enhanced temperature uniformity and optimal driving range through ILC integration.
6	Peter et al. (2024)	Conducted review on sustainable cooling technologies for electronics.	Systematic review of journals and reports; evaluated materials and eco-friendly techniques.	Concluded that green cooling systems reduce carbon impact and promote long-term sustainability.
7	You et al. (2024)	Explored mine cooling technologies for deep mining safety.	Compared mechanical and non-mechanical systems; reviewed material innovations.	Recommended intelligent and energy-efficient integrated cooling management systems.
8	Qu et al. (2024)	Studied high- temperature heat damage and dissipation in mines.	Reviewed heat source mechanisms; proposed low-temperature pre-cooling airflow model.	Provided theoretical guidance for optimizing mine ventilation and safety.
9	Fu et al. (2023)	Investigated battery thermal management in new energy vehicles.	Compared air, liquid, PCM, and hybrid cooling using heat generation models.	Identified hybrid and immersion cooling as future trends for EV batteries.
10	Huang et al. (2023)	Reviewed green cooling for Chinese Internet data centers (IDCs).	Compared air, free, liquid, and TES cooling methods; analyzed policy context.	Recommended climate- based combinations to improve IDC energy efficiency.
11	Qi et al. (2023)	Modeled immersion cooling for avionics server modules.	Conducted CFD simulations on flow distributors' effect on heat flux and PDN.	Found flow distributors reduce hot-spot temperature, improving local cooling.
12	Konovalov et al. (2023)	Reviewed cooling advancements for electric motors.	Summarized academic and patent literature; analyzed TRL9 industrial designs.	Found liquid cooling achieves high power-to-weight ratios despite complexity.

Vol 5, Issue 8, August 2025 www.ijesti.com E-ISSN: 2582-9734 International Journal of Engineering, Science, Technology and Innovation (IJESTI)

13	McNair et al. (2022)	Studied thin-walled pipe fabrication for lightweight cooling systems.	manufacturing/joining techniques.	Identified research gaps and suggested new directions for industrial application.
14	Pezzutto et al. (2022)	Reviewed alternative cooling technologies against vapor-compression systems.	Classified thermodynamic cycles; analyzed European market data.	Concluded emerging methods promising but not yet cost-competitive with VC systems.
15	Abedrabboh et al. (2022)	Analyzed sustainable cooling cycles to reduce emissions and energy use.	Conducted comparative analysis using sustainability performance index.	Found hybrid VC- emerging systems most efficient and environmentally viable.
16	Kılıç (2022)	Examined mechanical—thermal compressor integration for efficient cooling.	Reviewed absorption and adsorption systems in hybrid configurations.	Suggested continued innovation for energy-saving and flexible cooling solutions.
17	Yang et al. (2021)	Reviewed direct cooling systems for EV batteries.	Introduced "4C chain" framework for system design and modeling.	Recommended digital twin and cloud-based models for future precise control.
18	Aglawe et al. (2021)	Analyzed laptop and PC cooling techniques.	Compared air, single/two- phase liquid cooling, and heat pipes.	Predicted broader adoption of liquid cooling for high-performance electronics.
19	Sarbu (2021)	Investigated solar- driven heating and cooling systems.	Reviewed sorption, thermomechanical, and thermoelectric solar cooling.	Concluded solar-based cooling enhances building energy efficiency.
20	Wong et al. (2021)	Evaluated coppergraphene foams for advanced heat dissipation.	Characterized structural and thermal properties experimentally.	Found graphene-coated foams significantly improved thermal performance.
21	Harun & Sidik (2020)	Reviewed nanofluid- based liquid cooling for electronic devices.	Compared fluid types, block designs, and thermal properties.	Supported liquid cooling as superior to air for high-power CPUs.
22	Kulkarni et al. (2020)	Studied radiant cooling systems for buildings.	Analyzed water-based panels and chilled ceilings for energy use.	Confirmed radiant systems reduce costs and energy consumption.
23	Suhendri et al. (2020)	Reviewed radiative cooling integration in architecture.	Analyzed materials, design, and human comfort considerations.	Suggested interdisciplinary design for passive RC applications.
24	Groschup et al. (2019)	Evaluated thermal effects on motor drive performance.	Used reduced-order models and test bench data.	Found rotor/stator cooling choice influences power density and efficiency.
25	Lupu et al. (2018)	Examined thermal management for photovoltaic systems.	Reviewed solar cooling methods and PV–TE hybrid integration.	Highlighted thermal control as key to improving PV conversion efficiency.
26	Jafari et al. (2017)	Reviewed evaporative cooling for automotive engines.	Classified historical systems; analyzed benefits and research gaps.	Identified reasons for non- commercialization and areas for further study.

Table 1 presents a concise summary of major studies on advanced cooling systems. It highlights authors, proposed work, methodologies, and key conclusions, offering insights into evolving innovations, limitations, and future directions in thermal management research for high-power mechanical and electronic systems.

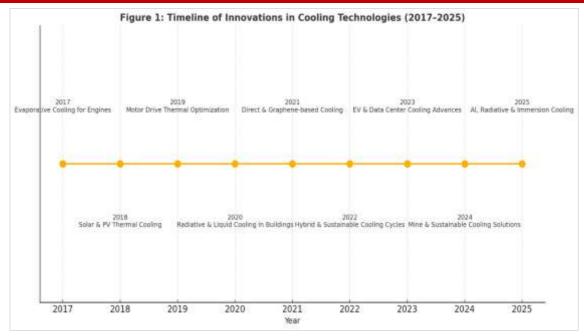


Figure 1: Timeline of Innovations in Cooling Technologies (2017–2025)

The figure 1 visually represents the chronological progression of research trends in cooling technologies for high-power electronics. It traces key innovations from 2017 to 2025, showing the shift from traditional evaporative and solar cooling systems to advanced hybrid, radiative, immersion, and AI-integrated cooling solutions. The timeline highlights the evolution toward sustainable, compact, and intelligent thermal management approaches applicable across domains such as electric vehicles, data centers, aerospace, and industrial systems.

3. Methodology

The present review adopts a systematic and thematic research approach to analyze advancements in cooling technologies for high-power electronic and mechanical systems. The methodology involves multiple stages: identification, selection, analysis, and synthesis of relevant literature to ensure comprehensive coverage and critical evaluation of existing and emerging cooling techniques.

Research Design

This study follows a systematic literature review (SLR) framework based on qualitative and analytical examination. The review focuses on peer-reviewed articles, conference papers, and technical reports published between 2017 and 2025, encompassing developments in thermal management, material innovation, and system integration for high-power electronics.

Selection Criteria

The inclusion criteria comprised studies that:

- Discuss cooling solutions for high-power or compact electronic systems.
- Present experimental results, numerical simulations, or design frameworks.
- Highlight materials, techniques, or system integrations improving heat transfer.

Exclusion criteria involved:

- Studies unrelated to electronics or mechanical system cooling.
- Non-peer-reviewed sources and purely theoretical models lacking validation.

Data Analysis and Synthesis

Each selected study was examined based on:

- Objective and research focus (e.g., EV cooling, data centers, aerospace).
- Cooling technique or innovation (e.g., microchannel, phase-change, nanofluid).
- Methodology employed (simulation, modeling, experimental validation).
- Performance outcomes such as heat flux removal, efficiency, and uniformity.
- Identified research gaps and future directions.

Findings were systematically compared and organized chronologically and thematically to identify technological trends and knowledge gaps. The results were summarized in Table 1 and illustrated in Figure 1, showing the evolution of cooling technologies from 2017 to 2025.

Validation and Reliability

To maintain reliability and validity, multiple reviewers cross-checked extracted information for consistency and accuracy. The review incorporated cross-referencing among sources and adopted triangulation of data to ensure objectivity and minimize selection bias.

This methodological framework provides a robust foundation for synthesizing research developments across a wide spectrum of cooling strategies. It enables the identification of key performance trends, technological innovations, and gaps that inform future advancements in efficient, compact, and sustainable cooling solutions for high-power electronic and mechanical systems.

4. Conclusion and Future Work

The review has examined the evolution of cooling technologies for high-power electronics integrated within mechanical systems, highlighting the growing importance of effective thermal management in sustaining performance, reliability, and energy efficiency. Traditional air and single-phase liquid cooling systems, though widely used, exhibit significant limitations in handling the extreme heat fluxes of modern compact and high-power devices. Emerging approaches—such as two-phase cooling, microchannel heat exchangers, vapor chambers, nanofluids, and phase-change materials—demonstrate superior thermal performance and scalability for future applications.

The integration of advanced materials (e.g., graphene, diamond coatings, and composite alloys) and manufacturing innovations (such as 3D printing and conformal microchannel design) has further improved heat transfer efficiency and structural adaptability. Likewise, AI-driven thermal control, smart sensors, and predictive algorithms have opened new possibilities for real-time optimization and fault detection, enhancing the intelligence and responsiveness of thermal management systems. These interdisciplinary advancements are transforming thermal control from passive dissipation to active and adaptive energy-efficient systems.

Despite these advancements, several challenges remain. Uniform heat spreading, long-term reliability under cyclic loads, cost-effective fabrication, and system miniaturization are ongoing concerns. The complex coupling between electrical, thermal, and mechanical domains necessitates comprehensive multi-physics modeling and simulation-driven design optimization to ensure durability and safety under variable operating conditions. Additionally, environmental sustainability calls for eco-friendly coolants, low-energy solutions, and integration with renewable systems to minimize carbon footprints.

Future Work

Future research should focus on:

- Hybrid cooling architectures that combine multiple techniques (e.g., two-phase + nanofluid + PCM) for superior performance under variable loads.
- Smart, self-regulating thermal systems using AI, IoT, and sensor-based control for adaptive cooling in real time.
- Material-level innovations, especially graphene-enhanced composites and phase-change interfaces, to improve thermal conductivity and weight reduction.
- 3D-printed and microfabricated cooling channels optimized for space-constrained mechanical and electronic systems.
- Lifecycle assessment and environmental impact analysis to ensure the sustainability of next-generation cooling solutions.
- Integration with renewable energy sources (e.g., solar-powered or passive radiative cooling) to reduce overall system energy consumption.

The development of novel cooling technologies is essential for enabling the next generation of high-performance electronic and mechanical systems. Through continued innovation in materials, modeling, and intelligent control, future cooling solutions will not only enhance operational efficiency and safety but also align with global sustainability goals, paving the way for greener and smarter thermal management technologies.

References

- [1] Pramanik, S. (2025). Electronic Cooler Technologies and Superior Data Center Cooling Techniques. In *Pioneering Approaches in Data Management* (pp. 235-260). IGI Global Scientific Publishing.
- [2] Meier, M., & Strangas, E. G. (2025). Cooling Systems for High-Speed Machines—Review and Design Considerations. *Energies*, *18*(15), 3954.
- [3] Ahmad, H., Dhamodharan, P., & Kim, S. C. (2025). Advances in cooling technologies for electric vehicle drive motors, reducers, and inverters: a comprehensive review. *Energy Technology*, *13*(5), 2401691.
- [4] Wang, L., Li, H., Liu, H., Chen, X., Chen, L., & Li, Z. (2025). Activate radiative cooling technology for data center cooling and energy efficiency analysis. *Journal of Thermal Science*, *34*(3), 1129-1147.
- [5] Ye, L., He, H., Shen, H., Zhang, Q., Wang, Y., & Ye, Z. (2025). Enhancement of driving range for automotive thermal management systems based on immersion liquid cooling technology. *Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering*, 09544070251333866.
- [6] Peter, E. O., Onyinyechukwu, C., Aniekan, A. U., Bright, N., Adetomilola, V. F., Valentine, I. I., & Kenneth, I. I. (2024). Sustainable cooling solutions for electronics: A comprehensive review: Investigating the latest techniques and materials, their effectiveness in mechanical applications, and associated environmental benefits.
- [7] You, B., Chen, Y., Yang, M., Gao, K., Cui, D., & Lu, M. (2024). Management of Thermal Hazards in Deep Mines in China: Applications and Prospects of Mine Cooling Technology. *Water*, *16*(16), 2347.

- [8] Qu, M., Zhang, Y., Zhang, X., Mu, H., Yin, S., Liu, Y., & Meng, L. (2024). A review of the research progress of cooling technology in deep mining. *Journal of Thermal Analysis and Calorimetry*, 149(24), 14535-14557.
- [9] Fu, P., Zhao, L., Wang, X., Sun, J., & Xin, Z. (2023). A review of cooling technologies in lithium-ion power battery thermal management systems for new energy vehicles. *Processes*, 11(12), 3450.
- [10] Huang, X., Yan, J., Zhou, X., Wu, Y., & Hu, S. (2023). Cooling technologies for internet data center in China: Principle, energy efficiency, and applications. *Energies*, *16*(20), 7158.
- [11] Qi, W., Liu, T., Zhang, Z., Wang, B., Liu, Q., & Xu, Y. (2023). Effect of direct liquid cooling technology with flow guide integration on avionics devices thermal and electrical performance. *Journal of Thermal Science and Engineering Applications*, 15(2), 021004.
- [12] Konovalov, D., Tolstorebrov, I., Eikevik, T. M., Kobalava, H., Radchenko, M., Hafner, A., & Radchenko, A. (2023). Recent developments in cooling systems and cooling management for electric motors. *Energies*, *16*(19), 7006.
- [13] McNair, S. A., Chaharsooghi, A. S., Carnevale, M., Rhead, A., Onnela, A., Daguin, J., ... & Lunt, A. J. (2022). Manufacturing technologies and joining methods of metallic thin-walled pipes for use in high pressure cooling systems. *The International Journal of Advanced Manufacturing Technology*, 118(3), 667-681.
- [14] Pezzutto, S., Quaglini, G., Riviere, P., Kranzl, L., Novelli, A., Zambito, A., & Wilczynski, E. (2022). Screening of cooling technologies in Europe: Alternatives to vapour compression and possible market developments. *Sustainability*, *14*(5), 2971.
- [15] Abedrabboh, O., Koç, M., & Biçer, Y. (2022). Sustainability performance of space-cooling technologies and approaches. *Energy Sources, Part A: Recovery, Utilization, and Environmental Effects*, 44(4), 9017-9042.
- [16] Kılıç, M. (2022). Evaluation of Combined Thermal–Mechanical Compression Systems: A Review for Energy Efficient Sustainable Cooling. *Sustainability*, *14*(21), 13724.
- [17] Yang, S., Zhou, S., Zhou, X., Chen, F., Li, Q., Lu, Y., ... & Deng, H. (2021). Essential technologies on the direct cooling thermal management system for electric vehicles. *International Journal of Energy Research*, 45(10), 14436-14464.
- [18] Aglawe, K. R., Yadav, R. K., & Thool, S. B. (2021, July). Current technologies on electronics cooling and scope for further improvement: a typical review. In *Proceedings of the International Conference on Industrial and Manufacturing Systems (CIMS-2020) Optimization in Industrial and Manufacturing Systems and Applications* (pp. 389-408). Cham: Springer International Publishing.
- [19] Sarbu, I. (2021). Solar heating and cooling systems. In *Advances in Building Services Engineering: Studies, Researches and Applications* (pp. 329-445). Cham: Springer International Publishing.
- [20] Wong, R., Antoniou, A., & Smet, V. (2021, June). Copper-graphene foams: A new high-performance material system for advanced package-integrated cooling technologies. In 2021 IEEE 71st Electronic Components and Technology Conference (ECTC) (pp. 1945-1951). IEEE.
- [21] Harun, M. A., & Sidik, N. A. C. (2020). A review on development of liquid cooling system for central processing unit (CPU). *Journal of Advanced Research in Fluid Mechanics and Thermal Sciences*, 78(2), 98-113.
- [22] Kulkarni, S. S., Husainy, A. S., Haswal, S. S., Rankhambe, S. S., Ambade, B. A., & Galatage, S. M. (2020). A glance on radiant cooling technology for heating and cooling for residential and commercial building application. *J. Adv. Res. Appl. Mech. Comput. Fluid Dyn.*, 7, 13-19.
- [23] Suhendri, Hu, M., Su, Y., Darkwa, J., & Riffat, S. (2020). Implementation of passive radiative cooling technology in buildings: A review. *Buildings*, 10(12), 215.

- [24] Groschup, B., Nell, M., & Hameyer, K. (2019, April). Operational enhancement of electric drives by advanced cooling technologies. In 2019 IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD) (Vol. 1, pp. 65-70). IEEE.
- [25] Lupu, A. G., Homutescu, V. M., Balanescu, D. T., & Popescu, E. A. (2018, November). A review of solar photovoltaic systems cooling technologies. In *IOP Conference Series: Materials Science and Engineering* (Vol. 444, p. 082016). IOP Publishing.
- [26] Jafari, S., Dunne, J. F., Langari, M., Yang, Z., Pirault, J. P., Long, C. A., & Thalackottore Jose, J. (2017). A review of evaporative cooling system concepts for engine thermal management in motor vehicles. *Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering*, 231(8), 1126-1143.